Computer Science > Sound
[Submitted on 23 Aug 2021]
Title:Subject Envelope based Multitype Reconstruction Algorithm of Speech Samples of Parkinson's Disease
View PDFAbstract:The risk of Parkinson's disease (PD) is extremely serious, and PD speech recognition is an effective method of diagnosis nowadays. However, due to the influence of the disease stage, corpus, and other factors on data collection, the ability of every samples within one subject to reflect the status of PD vary. No samples are useless totally, and not samples are 100% perfect. This characteristic means that it is not suitable just to remove some samples or keep some samples. It is necessary to consider the sample transformation for obtaining high quality new samples. Unfortunately, existing PD speech recognition methods focus mainly on feature learning and classifier design rather than sample learning, and few methods consider the sample transformation. To solve the problem above, a PD speech sample transformation algorithm based on multitype reconstruction operators is proposed in this paper. The algorithm is divided into four major steps. Three types of reconstruction operators are designed in the algorithm: types A, B and C. Concerning the type A operator, the original dataset is directly reconstructed by designing a linear transformation to obtain the first dataset. The type B operator is designed for clustering and linear transformation of the dataset to obtain the second new dataset. The third operator, namely, the type C operator, reconstructs the dataset by clustering and convolution to obtain the third dataset. Finally, the base classifier is trained based on the three new datasets, and then the classification results are fused by decision weighting. In the experimental section, two representative PD speech datasets are used for verification. The results show that the proposed algorithm is effective. Compared with other algorithms, the proposed algorithm achieves apparent improvements in terms of classification accuracy.
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.