High Energy Physics - Theory
[Submitted on 23 Aug 2021 (v1), last revised 28 Feb 2022 (this version, v3)]
Title:Studying the holographic Fermi surface in the scalar induced anisotropic background
View PDFAbstract:Holographic properties of a finite density fermion system have been shown to exhibit many interesting behaviours which can be observed in future. In this paper, we study low energy fermion properties in the framework of the holographic Mott-Insulator system. We study the nature of the Fermi surface and its evolution by tuning two types of dipole couplings in the bulk. We further introduce translational symmetry breaking complex scalar field, which is assumed to couple with the holographic fermions. The symmetry breaking background induced by the scalar field is known as Q-lattice. We calculate the fermion spectral function, which captures the low energy behaviour of the system. By tuning the dipole parameters and the non-normalizable component of the scalar field, we observe interesting phenomena such as spectral weight transfer, Fermi surface smearing, which has already been reported in various real condensed matter experiments.
Submission history
From: Wadbor Wahlang [view email][v1] Mon, 23 Aug 2021 10:20:56 UTC (3,814 KB)
[v2] Mon, 22 Nov 2021 17:53:34 UTC (2,170 KB)
[v3] Mon, 28 Feb 2022 18:31:36 UTC (2,735 KB)
Current browse context:
hep-th
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.