Electrical Engineering and Systems Science > Signal Processing
[Submitted on 17 Aug 2021]
Title:IQ Photonic Receiver for Coherent Imaging with a Scalable Aperture
View PDFAbstract:Silicon photonics (SiP) integrated coherent image sensors offer higher sensitivity and improved range-resolution-product compared to direct detection image sensors such as CCD and CMOS devices. Previous generation of SiP coherent imagers suffer from relative optical phase fluctuations between the signal and reference paths, which results in random phase and amplitude fluctuations in the output signal. This limitation negatively impacts the SNR and signal acquisition times. Here we present a coherent imager system that suppresses the optical carrier signal and removes non-idealities from the relative optical path using a photonic in-phase (I) and quadrature (Q) receiver via a $90^\circ$ hybrid detector. Furthermore, we incorporate row-column read-out and row-column addressing schemes to address the electro-optical interconnect density challenge. Our novel row-column read-out architecture for the sensor array requires only $2N$ interconnects for $N^2$ sensors. An $8\times8$ IQ sensor array is presented as a proof-of-concept demonstration with $1.2\times 10^{-5}$ resolution over range accuracy. Free-space FMCW ranging with 250um resolution at 1m distance has been demonstrated using this sensor array.
Submission history
From: Aroutin Khachaturian [view email][v1] Tue, 17 Aug 2021 22:17:08 UTC (9,157 KB)
Current browse context:
eess.SP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.