Electrical Engineering and Systems Science > Systems and Control
[Submitted on 19 Aug 2021 (v1), last revised 12 Feb 2023 (this version, v2)]
Title:Smoother Entropy for Active State Trajectory Estimation and Obfuscation in POMDPs
View PDFAbstract:We study the problem of controlling a partially observed Markov decision process (POMDP) to either aid or hinder the estimation of its state trajectory. We encode the estimation objectives via the smoother entropy, which is the conditional entropy of the state trajectory given measurements and controls. Consideration of the smoother entropy contrasts with previous approaches that instead resort to marginal (or instantaneous) state entropies due to tractability concerns. By establishing novel expressions for the smoother entropy in terms of the POMDP belief state, we show that both the problems of minimising and maximising the smoother entropy in POMDPs can surprisingly be reformulated as belief-state Markov decision processes with concave cost and value functions. The significance of these reformulations is that they render the smoother entropy a tractable optimisation objective, with structural properties amenable to the use of standard POMDP solution techniques for both active estimation and obfuscation. Simulations illustrate that optimisation of the smoother entropy leads to superior trajectory estimation and obfuscation compared to alternative approaches.
Submission history
From: Timothy Molloy [view email][v1] Thu, 19 Aug 2021 00:05:55 UTC (334 KB)
[v2] Sun, 12 Feb 2023 07:21:54 UTC (2,401 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.