Astrophysics > Cosmology and Nongalactic Astrophysics
[Submitted on 17 Aug 2021]
Title:Viscous Dark Energy Accretion Activities : Sonic Speed, Angular Momentum and Mach Number Studies
View PDFAbstract:In this present article, we study different accretion properties regarding viscous accretion of dark energy. Modified Chaplygin gas is chosen as the dark energy candidate. Viscosity is encountered with the help of Shakura-Sunyaev viscosity parameter. We study sonic speed vs radial distance curves. We compare between adiabatic and dark energy dominated cases and follow that sonic speed falls as we go nearer to the central gravitating object. As viscosity is imposed, a threshold drop in accretion sonic speed is followed. Average rate of fall in accretion sonic speed is increased with black hole's spin. This is signifying that this kind of accretion is weakening the overall matter/energy infall. Specific angular momentum to Keplerian angular momentum ratio is found to fall as we go far from the black hole. Accretion Mach number turns high as we go towards the inner region and high wind Mach number is not allowed as we are going out. Combining, we conclude that the system weakens the feeding process of accretion.
Current browse context:
astro-ph.CO
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.