Computer Science > Robotics
[Submitted on 23 Aug 2021 (v1), last revised 28 Nov 2022 (this version, v3)]
Title:A generalized stacked reinforcement learning method for sampled systems
View PDFAbstract:A common setting of reinforcement learning (RL) is a Markov decision process (MDP) in which the environment is a stochastic discrete-time dynamical system. Whereas MDPs are suitable in such applications as video-games or puzzles, physical systems are time-continuous. A general variant of RL is of digital format, where updates of the value (or cost) and policy are performed at discrete moments in time. The agent-environment loop then amounts to a sampled system, whereby sample-and-hold is a specific case. In this paper, we propose and benchmark two RL methods suitable for sampled systems. Specifically, we hybridize model-predictive control (MPC) with critics learning the optimal Q- and value (or cost-to-go) function. Optimality is analyzed and performance comparison is done in an experimental case study with a mobile robot.
Submission history
From: Pavel Osinenko [view email][v1] Mon, 23 Aug 2021 20:21:05 UTC (1,743 KB)
[v2] Thu, 2 Jun 2022 13:16:20 UTC (1,609 KB)
[v3] Mon, 28 Nov 2022 09:42:59 UTC (1,612 KB)
Current browse context:
cs.RO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.