Computer Science > Networking and Internet Architecture
[Submitted on 24 Aug 2021]
Title:Optimal UAV Hitching on Ground Vehicles
View PDFAbstract:Due to its mobility and agility, unmanned aerial vehicle (UAV) has emerged as a promising technology for various tasks, such as sensing, inspection and delivery. However, a typical UAV has limited energy storage and cannot fly a long distance without being recharged. This motivates several existing proposals to use trucks and other ground vehicles to offer riding to help UAVs save energy and expand the operation radius. We present the first theoretical study regarding how UAVs should optimally hitch on ground vehicles, considering vehicles' different travelling patterns and supporting capabilities. For a single UAV, we derive closed-form optimal vehicle selection and hitching strategy. When vehicles only support hitching, a UAV would prefer the vehicle that can carry it closest to its final destination. When vehicles can offer hitching plus charging, the UAV may hitch on a vehicle that carries it farther away from its destination and hitch a longer distance. The UAV may also prefer to hitch on a slower vehicle for the benefit of battery recharging. For multiple UAVs in need of hitching, we develop the max-saving algorithm (MSA) to optimally match UAV-vehicle collaboration. We prove that the MSA globally optimizes the total hitching benefits for the UAVs.
Current browse context:
cs.NI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.