Computer Science > Machine Learning
[Submitted on 24 Aug 2021 (v1), last revised 28 Dec 2023 (this version, v2)]
Title:Cumulative Regret Analysis of the Piyavskii--Shubert Algorithm and Its Variants for Global Optimization
View PDF HTML (experimental)Abstract:We study the problem of global optimization, where we analyze the performance of the Piyavskii--Shubert algorithm and its variants. For any given time duration $T$, instead of the extensively studied simple regret (which is the difference of the losses between the best estimate up to $T$ and the global minimum), we study the cumulative regret up to time $T$. For $L$-Lipschitz continuous functions, we show that the cumulative regret is $O(L\log T)$. For $H$-Lipschitz smooth functions, we show that the cumulative regret is $O(H)$. We analytically extend our results for functions with Holder continuous derivatives, which cover both the Lipschitz continuous and the Lipschitz smooth functions, individually. We further show that a simpler variant of the Piyavskii-Shubert algorithm performs just as well as the traditional variants for the Lipschitz continuous or the Lipschitz smooth functions. We further extend our results to broader classes of functions, and show that, our algorithm efficiently determines its queries; and achieves nearly minimax optimal (up to log factors) cumulative regret, for general convex or even concave regularity conditions on the extrema of the objective (which encompasses many preceding regularities). We consider further extensions by investigating the performance of the Piyavskii-Shubert variants in the scenarios with unknown regularity, noisy evaluation and multivariate domain.
Submission history
From: Kaan Gokcesu [view email][v1] Tue, 24 Aug 2021 17:36:33 UTC (16 KB)
[v2] Thu, 28 Dec 2023 16:37:20 UTC (28 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.