Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 25 Aug 2021]
Title:Decentralized optimization with non-identical sampling in presence of stragglers
View PDFAbstract:We consider decentralized consensus optimization when workers sample data from non-identical distributions and perform variable amounts of work due to slow nodes known as stragglers. The problem of non-identical distributions and the problem of variable amount of work have been previously studied separately. In our work we analyze them together under a unified system model. We study the convergence of the optimization algorithm when combining worker outputs under two heuristic methods: (1) weighting equally, and (2) weighting by the amount of work completed by each. We prove convergence of the two methods under perfect consensus, assuming straggler statistics are independent and identical across all workers for all iterations. Our numerical results show that under approximate consensus the second method outperforms the first method for both convex and non-convex objective functions. We make use of the theory on minimum variance unbiased estimator (MVUE) to evaluate the existence of an optimal method for combining worker outputs. While we conclude that neither of the two heuristic methods are optimal, we also show that an optimal method does not exist.
Current browse context:
cs.DC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.