Quantum Physics
[Submitted on 25 Aug 2021 (v1), last revised 15 Jun 2022 (this version, v2)]
Title:Dynamic DV-QKD Networking in Fully-Meshed Software-Defined Optical Networks
View PDFAbstract:We demonstrate for the first time a four-node trusted-node-free metro network configuration with dynamic discrete-variable quantum key distribution DV-QKD networking capabilities across four optical network nodes. The network allows the dynamic deployment of any QKD link between two nodes of the network, while a QKD-aware centralised software-defined networking (SDN) controller is utilised to provide dynamicity in switching and rerouting. The feasibility of coexisting a quantum channel with carrier-grade classical optical channels where both the quantum and classical channels are in the C-band over field-deployed metropolitan networks and laboratory-based fibres (<10km) is experimentally explored in terms of achievable quantum bit error rate, secret key rate as well as classical signal bit error rate. Moreover, coexistence analysis over multi-hops configuration using different switching scenarios is also presented. The secret key rate dropped 43% when coexisting one classical channel with 150 GHz spacing from the quantum channel for multiple links. This is due to the noise leakage from the Raman scattering into the 100 GHz bandwidth of the internal filter of the Bob DV-QKD unit. When coexisting four classical channels with 150 GHz spacing between the quantum and the nearest classical channel, the quantum channel deteriorates faster due to the combination of Raman noise, other nonlinearities and high aggregated launch power causing the QBER value to exceed the threshold of 6% leading the SKR to reach a value of zero bps at a launch power of 7 dB per channel. Furthermore, the coexistence of a quantum channel and six classical channels through a field-deployed fibre test network is examined.
Submission history
From: Obada Alia [view email][v1] Wed, 25 Aug 2021 09:46:32 UTC (5,135 KB)
[v2] Wed, 15 Jun 2022 07:15:37 UTC (3,519 KB)
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.