Computer Science > Computer Vision and Pattern Recognition
[Submitted on 25 Aug 2021 (v1), last revised 3 Oct 2022 (this version, v2)]
Title:Adversarially Robust One-class Novelty Detection
View PDFAbstract:One-class novelty detectors are trained with examples of a particular class and are tasked with identifying whether a query example belongs to the same known class. Most recent advances adopt a deep auto-encoder style architecture to compute novelty scores for detecting novel class data. Deep networks have shown to be vulnerable to adversarial attacks, yet little focus is devoted to studying the adversarial robustness of deep novelty detectors. In this paper, we first show that existing novelty detectors are susceptible to adversarial examples. We further demonstrate that commonly-used defense approaches for classification tasks have limited effectiveness in one-class novelty detection. Hence, we need a defense specifically designed for novelty detection. To this end, we propose a defense strategy that manipulates the latent space of novelty detectors to improve the robustness against adversarial examples. The proposed method, referred to as Principal Latent Space (PrincipaLS), learns the incrementally-trained cascade principal components in the latent space to robustify novelty detectors. PrincipaLS can purify latent space against adversarial examples and constrain latent space to exclusively model the known class distribution. We conduct extensive experiments on eight attacks, five datasets and seven novelty detectors, showing that PrincipaLS consistently enhances the adversarial robustness of novelty detection models. Code is available at this https URL
Submission history
From: Shao-Yuan Lo [view email][v1] Wed, 25 Aug 2021 10:41:29 UTC (3,467 KB)
[v2] Mon, 3 Oct 2022 20:29:44 UTC (7,454 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.