Computer Science > Sound
[Submitted on 25 Aug 2021]
Title:AccoMontage: Accompaniment Arrangement via Phrase Selection and Style Transfer
View PDFAbstract:Accompaniment arrangement is a difficult music generation task involving intertwined constraints of melody, harmony, texture, and music structure. Existing models are not yet able to capture all these constraints effectively, especially for long-term music generation. To address this problem, we propose AccoMontage, an accompaniment arrangement system for whole pieces of music through unifying phrase selection and neural style transfer. We focus on generating piano accompaniments for folk/pop songs based on a lead sheet (i.e., melody with chord progression). Specifically, AccoMontage first retrieves phrase montages from a database while recombining them structurally using dynamic programming. Second, chords of the retrieved phrases are manipulated to match the lead sheet via style transfer. Lastly, the system offers controls over the generation process. In contrast to pure learning-based approaches, AccoMontage introduces a novel hybrid pathway, in which rule-based optimization and deep learning are both leveraged to complement each other for high-quality generation. Experiments show that our model generates well-structured accompaniment with delicate texture, significantly outperforming the baselines.
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.