Computer Science > Computer Vision and Pattern Recognition
[Submitted on 25 Aug 2021]
Title:Automatic Feature Highlighting in Noisy RES Data With CycleGAN
View PDFAbstract:Radio echo sounding (RES) is a common technique used in subsurface glacial imaging, which provides insight into the underlying rock and ice. However, systematic noise is introduced into the data during collection, complicating interpretation of the results. Researchers most often use a combination of manual interpretation and filtering techniques to denoise data; however, these processes are time intensive and inconsistent. Fully Convolutional Networks have been proposed as an automated alternative to identify layer boundaries in radargrams. However, they require high-quality manually processed training data and struggle to interpolate data in noisy samples (Varshney et al. 2020).
Herein, the authors propose a GAN based model to interpolate layer boundaries through noise and highlight layers in two-dimensional glacial RES data. In real-world noisy images, filtering often results in loss of data such that interpolating layer boundaries is nearly impossible. Furthermore, traditional machine learning approaches are not suited to this task because of the lack of paired data, so we employ an unpaired image-to-image translation model. For this model, we create a synthetic dataset to represent the domain of images with clear, highlighted layers and use an existing real-world RES dataset as our noisy domain.
We implement a CycleGAN trained on these two domains to highlight layers in noisy images that can interpolate effectively without significant loss of structure or fidelity. Though the current implementation is not a perfect solution, the model clearly highlights layers in noisy data and allows researchers to determine layer size and position without mathematical filtering, manual processing, or ground-truth images for training. This is significant because clean images generated by our model enable subsurface researchers to determine glacial layer thickness more efficiently.
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.