Computer Science > Networking and Internet Architecture
[Submitted on 25 Aug 2021]
Title:ML-Assisted UE Positioning: Performance Analysis and 5G Architecture Enhancements
View PDFAbstract:Artificial intelligence and data-driven networks will be integral part of 6G systems. In this article, we comprehensively discuss implementation challenges and need for architectural changes in 5G radio access networks for integrating machine learning (ML) solutions. As an example use case, we investigate user equipment (UE) positioning assisted by deep learning (DL) in 5G and beyond networks. As compared to state of the art positioning algorithms used in today's networks, radio signal fingerprinting and machine learning (ML) assisted positioning requires smaller additional feedback overhead; and the positioning estimates are made directly inside the radio access network (RAN), thereby assisting in radio resource management. In this regard, we study ML-assisted positioning methods and evaluate their performance using system level simulations for an outdoor scenario. The study is based on the use of raytracing tool, a 3GPP 5G NR compliant system level simulator and DL framework to estimate positioning accuracy of the UE. We evaluate and compare performance of various DL models and show mean positioning error in the range of 1-1.5m for a 2-hidden layer DL architecture with appropriate feature-modeling. Building on our performance analysis, we discuss pros and cons of various architectures to implement ML solutions for future networks and draw conclusions on the most suitable architecture.
Submission history
From: Muhammad Majid Butt [view email][v1] Wed, 25 Aug 2021 17:52:58 UTC (500 KB)
Current browse context:
cs.NI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.