Computer Science > Computer Vision and Pattern Recognition
[Submitted on 26 Aug 2021 (v1), last revised 2 Apr 2022 (this version, v3)]
Title:Vision-Language Navigation: A Survey and Taxonomy
View PDFAbstract:Vision-Language Navigation (VLN) tasks require an agent to follow human language instructions to navigate in previously unseen environments. This challenging field involving problems in natural language processing, computer vision, robotics, etc., has spawn many excellent works focusing on various VLN tasks. This paper provides a comprehensive survey and an insightful taxonomy of these tasks based on the different characteristics of language instructions in these tasks. Depending on whether the navigation instructions are given for once or multiple times, this paper divides the tasks into two categories, i.e., single-turn and multi-turn tasks. For single-turn tasks, we further subdivide them into goal-oriented and route-oriented based on whether the instructions designate a single goal location or specify a sequence of multiple locations. For multi-turn tasks, we subdivide them into passive and interactive tasks based on whether the agent is allowed to question the instruction or not. These tasks require different capabilities of the agent and entail various model designs. We identify progress made on the tasks and look into the limitations of existing VLN models and task settings. Finally, we discuss several open issues of VLN and point out some opportunities in the future, i.e., incorporating knowledge with VLN models and implementing them in the real physical world.
Submission history
From: Wansen Wu [view email][v1] Thu, 26 Aug 2021 01:51:18 UTC (36,864 KB)
[v2] Wed, 1 Sep 2021 01:05:29 UTC (8,927 KB)
[v3] Sat, 2 Apr 2022 02:12:14 UTC (4,619 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.