Astrophysics > Cosmology and Nongalactic Astrophysics
[Submitted on 26 Aug 2021 (v1), last revised 14 Jan 2022 (this version, v2)]
Title:Confronting the primordial black hole scenario with the gravitational-wave events detected by LIGO-Virgo
View PDFAbstract:Adopting a binned method, we model-independently reconstruct the mass function of primordial black holes (PBHs) from GWTC-3 and find that such a PBH mass function can be explained by a broad red-tilted power spectrum of curvature perturbations. Even though GW190521 with component masses in upper mass gap $(m>65M_\odot)$ can be naturally interpreted in the PBH scenario, the events (including GW190814, GW190425, GW200105, and GW200115) with component masses in the light mass range $(m<3M_\odot)$ are quite unlikely to be explained by binary PBHs although there are no electromagnetic counterparts because the corresponding PBH merger rates are much smaller than those given by LIGO-Virgo. Furthermore, we predict that both the gravitational-wave (GW) background generated by the binary PBHs and the scalar-induced GWs accompanying the formation of PBHs should be detected by the ground-based and space-borne GW detectors and pulsar timing arrays in the future.
Submission history
From: Qing-Guo Huang [view email][v1] Thu, 26 Aug 2021 12:36:54 UTC (255 KB)
[v2] Fri, 14 Jan 2022 04:45:26 UTC (268 KB)
Current browse context:
astro-ph.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.