Mathematics > Optimization and Control
[Submitted on 26 Aug 2021 (v1), last revised 5 Apr 2023 (this version, v4)]
Title:A stochastic gradient method for a class of nonlinear PDE-constrained optimal control problems under uncertainty
View PDFAbstract:The study of optimal control problems under uncertainty plays an important role in scientific numerical simulations. This class of optimization problems is strongly utilized in engineering, biology and finance. In this paper, a stochastic gradient method is proposed for the numerical resolution of a nonconvex stochastic optimization problem on a Hilbert space. We show that, under suitable assumptions, strong or weak accumulation points of the iterates produced by the method converge almost surely to stationary points of the original optimization problem. Measurability and convergence rates of a stationarity measure are handled, filling a gap for applications to nonconvex infinite dimensional stochastic optimization problems. The method is demonstrated on an optimal control problem constrained by a class of elliptic semilinear partial differential equations (PDEs) under uncertainty.
Submission history
From: Caroline Geiersbach [view email][v1] Thu, 26 Aug 2021 13:25:24 UTC (22 KB)
[v2] Fri, 15 Jul 2022 08:53:50 UTC (772 KB)
[v3] Thu, 1 Dec 2022 23:03:49 UTC (570 KB)
[v4] Wed, 5 Apr 2023 08:47:26 UTC (1,362 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.