Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 26 Aug 2021 (v1), last revised 20 Jun 2022 (this version, v3)]
Title:Ensemble CNN and Uncertainty Modeling to Improve Automatic Identification/Segmentation of Multiple Sclerosis Lesions in Magnetic Resonance Imaging
View PDFAbstract:To date, several automated strategies for identification/segmentation of Multiple Sclerosis (MS) lesions with the use of Magnetic Resonance Imaging (MRI) have been presented, but they are outperformed by human experts, from whom they act very differently. This is mainly due to: the ambiguity originated by MRI instabilities; peculiar variability of MS; non specificity of MRI regarding MS. Physicians partially manage the uncertainty generated by ambiguity relying on radiological/clinical/anatomical background and experience. To emulate human diagnosis, we present an automated framework for identification/segmentation of MS lesions from MRI based on three pivotal concepts: 1. the modelling of uncertainty; 2. the proposal of two, separately trained, CNN, one optimized for lesions and the other for lesions with respect to the environment surrounding them, respectively repeated for axial, coronal and sagittal directions; 3. the definition of an ensemble classifier to merge the information collected by different CNN. The proposed framework is trained, validated and tested on the 2016 MSSEG benchmark public data set from a single imaging modality, the FLuid-Attenuated Inversion Recovery (FLAIR). The comparison with the ground-truth and with each of 7 human raters, proves that there is no significant difference between the automated and the human raters.
Submission history
From: Matteo Polsinelli [view email][v1] Thu, 26 Aug 2021 13:48:06 UTC (8,420 KB)
[v2] Fri, 29 Oct 2021 14:30:11 UTC (3,871 KB)
[v3] Mon, 20 Jun 2022 15:11:54 UTC (4,165 KB)
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.