Computer Science > Computer Vision and Pattern Recognition
[Submitted on 26 Aug 2021 (v1), last revised 26 Oct 2022 (this version, v2)]
Title:Fast and Flexible Human Pose Estimation with HyperPose
View PDFAbstract:Estimating human pose is an important yet challenging task in multimedia applications. Existing pose estimation libraries target reproducing standard pose estimation algorithms. When it comes to customising these algorithms for real-world applications, none of the existing libraries can offer both the flexibility of developing custom pose estimation algorithms and the high-performance of executing these algorithms on commodity devices. In this paper, we introduce Hyperpose, a novel flexible and high-performance pose estimation library. Hyperpose provides expressive Python APIs that enable developers to easily customise pose estimation algorithms for their applications. It further provides a model inference engine highly optimised for real-time pose estimation. This engine can dynamically dispatch carefully designed pose estimation tasks to CPUs and GPUs, thus automatically achieving high utilisation of hardware resources irrespective of deployment environments. Extensive evaluation results show that Hyperpose can achieve up to 3.1x~7.3x higher pose estimation throughput compared to state-of-the-art pose estimation libraries without compromising estimation accuracy. By 2021, Hyperpose has received over 1000 stars on GitHub and attracted users from both industry and academy.
Submission history
From: Yixiao Guo [view email][v1] Thu, 26 Aug 2021 14:51:24 UTC (678 KB)
[v2] Wed, 26 Oct 2022 08:05:49 UTC (677 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.