Astrophysics > High Energy Astrophysical Phenomena
[Submitted on 26 Aug 2021 (v1), last revised 2 Nov 2021 (this version, v2)]
Title:Spin-orbit misalignment from triple-star common envelope evolution
View PDFAbstract:I study a triple star common envelope evolution (CEE) of a tight binary system that is spiraling-in inside a giant envelope and launches jets that spin-up the envelope with an angular momentum component perpendicular to the orbital angular momentum of the triple star system. This occurs when the orbital plane of the tight binary system and that of the triple star system are inclined to each other, so the jets are not along the triple star orbital angular momentum. The merger of the tight binary stars also tilts the envelope spin direction. If the giant is a red supergiant (RSG) star that later collapses to form a black hole (BH) the BH final spin is misaligned with the orbital angular momentum. Therefore, CEE of neutron star (NS) or BH tight binaries with each other or with one main sequence star (MSS) inside the envelope of an RSG, where the jets power a common envelope jets supernova (CEJSN) event, might end with a NS/BH-NS/BH close binary system with spin-orbit misalignment. Such binaries can later merge to be gravitational waves sources. I list five triple star scenarios that might lead to spin-orbit misalignments of NS/BH-NS/BH binary systems, two of which predict that the two spins be parallel to each other. In the case of a tight binary system of two MSSs inside an asymptotic giant branch star the outcome is an additional non-spherical component to the mass loss with the formation of a messy planetary nebula.
Submission history
From: Noam Soker [view email][v1] Thu, 26 Aug 2021 16:08:22 UTC (287 KB)
[v2] Tue, 2 Nov 2021 09:49:55 UTC (288 KB)
Current browse context:
astro-ph.HE
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.