Astrophysics > High Energy Astrophysical Phenomena
[Submitted on 26 Aug 2021 (v1), last revised 5 Sep 2021 (this version, v2)]
Title:Radiation GRMHD simulations of M87: funnel properties and prospects for gap acceleration
View PDFAbstract:We use the public code ebhlight to carry out 3D radiative general relativistic magnetohydrodynamics (GRMHD) simulations of accretion onto the supermassive black hole in M87. The simulations self-consistently evolve a frequency-dependent Monte Carlo description of the radiation field produced by the accretion flow. We explore two limits of accumulated magnetic flux at the black hole (SANE and MAD), each coupled to several sub-grid prescriptions for electron heating that are motivated by models of turbulence and magnetic reconnection. We present convergence studies for the radiation field and study its properties. We find that the near-horizon photon energy density is an order of magnitude higher than is predicted by simple isotropic estimates from the observed luminosity. The radially dependent photon momentum distribution is anisotropic and can be modeled by a set of point-sources near the equatorial plane. We draw properties of the radiation and magnetic field from the simulation and feed them into an analytic model of gap acceleration to estimate the very high energy (VHE) gamma-ray luminosity from the magnetized jet funnel, assuming that a gap is able to form. We find luminosities of $\rm \sim 10^{41} \, erg \, s^{-1}$ for MAD models and $\rm \sim 2\times 10^{40} \, erg \, s^{-1}$ for SANE models, which are comparable to measurements of M87's VHE flares. The time-dependence seen in our calculations is insufficient to explain the flaring behavior. Our results provide a step towards bridging theoretical models of near-horizon properties seen in black hole images with the VHE activity of M87.
Submission history
From: Philippe Yao [view email][v1] Thu, 26 Aug 2021 16:30:36 UTC (12,558 KB)
[v2] Sun, 5 Sep 2021 15:46:37 UTC (12,558 KB)
Current browse context:
astro-ph.HE
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.