Computer Science > Computer Vision and Pattern Recognition
[Submitted on 26 Aug 2021 (v1), last revised 27 May 2022 (this version, v4)]
Title:Re-using Adversarial Mask Discriminators for Test-time Training under Distribution Shifts
View PDFAbstract:Thanks to their ability to learn flexible data-driven losses, Generative Adversarial Networks (GANs) are an integral part of many semi- and weakly-supervised methods for medical image segmentation. GANs jointly optimise a generator and an adversarial discriminator on a set of training data. After training is complete, the discriminator is usually discarded, and only the generator is used for inference. But should we discard discriminators? In this work, we argue that training stable discriminators produces expressive loss functions that we can re-use at inference to detect and \textit{correct} segmentation mistakes. First, we identify key challenges and suggest possible solutions to make discriminators re-usable at inference. Then, we show that we can combine discriminators with image reconstruction costs (via decoders) to endow a causal perspective to test-time training and further improve the model. Our method is simple and improves the test-time performance of pre-trained GANs. Moreover, we show that it is compatible with standard post-processing techniques and it has the potential to be used for Online Continual Learning. With our work, we open new research avenues for re-using adversarial discriminators at inference. Our code is available at this https URL.
Submission history
From: Gabriele Valvano [view email][v1] Thu, 26 Aug 2021 17:31:46 UTC (2,540 KB)
[v2] Thu, 23 Dec 2021 21:46:06 UTC (2,550 KB)
[v3] Thu, 28 Apr 2022 20:30:04 UTC (2,740 KB)
[v4] Fri, 27 May 2022 14:17:34 UTC (2,741 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.