Mathematics > Optimization and Control
[Submitted on 26 Aug 2021]
Title:A Different Perspective On The Stochastic Convex Feasibility Problem
View PDFAbstract:We analyze a simple randomized subgradient method for approximating solutions to stochastic systems of convex functional constraints, the only input to the algorithm being the size of minibatches. By introducing a new notion of what is meant for a point to approximately solve the constraints, determining bounds on the expected number of iterations reduces to determining a hitting time for a compound Bernoulli process, elementary probability. Besides bounding the expected number of iterations quite generally, we easily establish concentration inequalities on the number of iterations, and more interesting, we establish much-improved bounds when a notion akin to Hölderian growth is satisfied, for all degrees of growth, not just the linear growth of piecewise-linear convex functions or the quadratic growth of strongly convex functions. Finally, we establish the analogous results under a slight modification to the algorithm which results in the user knowing with high confidence an iterate is in hand that approximately solves the system. Perhaps surprisingly, the iteration bounds here are deterministic -- all of the probability gets wrapped into the confidence level (albeit at the expense of potentially large minibatches).
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.