Computer Science > Computer Vision and Pattern Recognition
[Submitted on 27 Aug 2021 (v1), last revised 11 Oct 2021 (this version, v2)]
Title:FOVEA: Foveated Image Magnification for Autonomous Navigation
View PDFAbstract:Efficient processing of high-res video streams is safety-critical for many robotics applications such as autonomous driving. To maintain real-time performance, many practical systems downsample the video stream. But this can hurt downstream tasks such as (small) object detection. Instead, we take inspiration from biological vision systems that allocate more foveal "pixels" to salient parts of the scene. We introduce FOVEA, an approach for intelligent downsampling that ensures salient image regions remain "magnified" in the downsampled output. Given a high-res image, FOVEA applies a differentiable resampling layer that outputs a small fixed-size image canvas, which is then processed with a differentiable vision module (e.g., object detection network), whose output is then differentiably backward mapped onto the original image size. The key idea is to resample such that background pixels can make room for salient pixels of interest. In order to ensure the overall pipeline remains efficient, FOVEA makes use of cheap and readily available cues for saliency, including dataset-specific spatial priors or temporal priors computed from object predictions in the recent past. On the autonomous driving datasets Argoverse-HD and BDD100K, our proposed method boosts the detection AP over standard Faster R-CNN, both with and without finetuning. Without any noticeable increase in compute, we improve accuracy on small objects by over 2x without degrading performance on large objects. Finally, FOVEA sets a new record for streaming AP (from 17.8 to 23.0 on a GTX 1080 Ti GPU), a metric designed to capture both accuracy and latency.
Submission history
From: Mengtian Li [view email][v1] Fri, 27 Aug 2021 03:07:55 UTC (12,153 KB)
[v2] Mon, 11 Oct 2021 09:38:15 UTC (14,844 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.