Computer Science > Computer Vision and Pattern Recognition
[Submitted on 27 Aug 2021]
Title:DAE-GAN: Dynamic Aspect-aware GAN for Text-to-Image Synthesis
View PDFAbstract:Text-to-image synthesis refers to generating an image from a given text description, the key goal of which lies in photo realism and semantic consistency. Previous methods usually generate an initial image with sentence embedding and then refine it with fine-grained word embedding. Despite the significant progress, the 'aspect' information (e.g., red eyes) contained in the text, referring to several words rather than a word that depicts 'a particular part or feature of something', is often ignored, which is highly helpful for synthesizing image details. How to make better utilization of aspect information in text-to-image synthesis still remains an unresolved challenge. To address this problem, in this paper, we propose a Dynamic Aspect-awarE GAN (DAE-GAN) that represents text information comprehensively from multiple granularities, including sentence-level, word-level, and aspect-level. Moreover, inspired by human learning behaviors, we develop a novel Aspect-aware Dynamic Re-drawer (ADR) for image refinement, in which an Attended Global Refinement (AGR) module and an Aspect-aware Local Refinement (ALR) module are alternately employed. AGR utilizes word-level embedding to globally enhance the previously generated image, while ALR dynamically employs aspect-level embedding to refine image details from a local perspective. Finally, a corresponding matching loss function is designed to ensure the text-image semantic consistency at different levels. Extensive experiments on two well-studied and publicly available datasets (i.e., CUB-200 and COCO) demonstrate the superiority and rationality of our method.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.