Mathematics > Optimization and Control
[Submitted on 27 Aug 2021]
Title:Efficient algorithm for approximating Nash equilibrium of distributed aggregative games
View PDFAbstract:In this paper, we aim to design a distributed approximate algorithm for seeking Nash equilibria of an aggregative game. Due to the local set constraints of each player, projectionbased algorithms have been widely employed for solving such problems actually. Since it may be quite hard to get the exact projection in practice, we utilize inscribed polyhedrons to approximate local set constraints, which yields a related approximate game model. We first prove that the Nash equilibrium of the approximate game is the $\epsilon$-Nash equilibrium of the original game, and then propose a distributed algorithm to seek the $\epsilon$-Nash equilibrium, where the projection is then of a standard form in quadratic programming. With the help of the existing developed methods for solving quadratic programming, we show the convergence of the proposed algorithm, and also discuss the computational cost issue related to the approximation. Furthermore, based on the exponential convergence of the algorithm, we estimate the approximation accuracy related to $\epsilon$. Additionally, we investigate the computational cost saved by approximation on numerical examples.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.