Computer Science > Computer Vision and Pattern Recognition
[Submitted on 27 Aug 2021 (v1), last revised 1 May 2022 (this version, v5)]
Title:Rethinking the Misalignment Problem in Dense Object Detection
View PDFAbstract:Object detection aims to localize and classify the objects in a given image, and these two tasks are sensitive to different object regions. Therefore, some locations predict high-quality bounding boxes but low classification scores, and some locations are quite the opposite. A misalignment exists between the two tasks, and their features are spatially entangled. In order to solve the misalignment problem, we propose a plug-in Spatial-disentangled and Task-aligned operator (SALT). By predicting two task-aware point sets that are located in each task's sensitive regions, SALT can reassign features from those regions and align them to the corresponding anchor point. Therefore, features for the two tasks are spatially aligned and disentangled. To minimize the difference between the two regression stages, we propose a Self-distillation regression (SDR) loss that can transfer knowledge from the refined regression results to the coarse regression results. On the basis of SALT and SDR loss, we propose SALT-Net, which explicitly exploits task-aligned point-set features for accurate detection results. Extensive experiments on the MS-COCO dataset show that our proposed methods can consistently boost different state-of-the-art dense detectors by $\sim$2 AP. Notably, SALT-Net with Res2Net-101-DCN backbone achieves 53.8 AP on the MS-COCO test-dev.
Submission history
From: Yang Yang [view email][v1] Fri, 27 Aug 2021 08:40:37 UTC (16,856 KB)
[v2] Wed, 8 Sep 2021 08:43:39 UTC (11,065 KB)
[v3] Fri, 8 Apr 2022 11:34:54 UTC (8,469 KB)
[v4] Mon, 11 Apr 2022 10:16:55 UTC (12,721 KB)
[v5] Sun, 1 May 2022 03:49:46 UTC (12,720 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.