Mathematics > Optimization and Control
[Submitted on 26 Aug 2021]
Title:Calculating Cost Distributions of a Multiservice Loss System
View PDFAbstract:Congestion pricing has received lots of attention in scientific discussion. Congestion pricing means that the operator increases prices at the time of congestion and the traffic demand are expected to decrease. In a certain sense, shadow prices are an optimal way of congestion pricing: users are charged shadow prices, i.e., the expectations of future losses because of blocked connections. The shadow prices can be calculated exactly from the Howard equation, but this method is difficult. The paper presents simple approximations to the solution of the Howard equation and a way to derive more exact approximations. If users do not react by lowering their demand, they will receive higher bills to pay. Many users do not react to increased prices but would want to know how the congestion pricing mechanism affects the bills. The distribution of the price of a connection follows from knowing the shadow prices and the probability of a congestion state. There is another interesting distribution. The network produces profit to the operator, or equivalently, blocked connections produce a cost to the operator. The average cost rate can be calculated from the Howard equation, but the costs have some distribution. The distribution gives the risk that the actual costs exceed the average costs, and the operator should include this risk in the prices. The main result of this paper shows how to calculate the distribution of the costs in the future for congestion pricing by shadow prices and for congestion pricing with a more simple pricing scheme that produces the same average costs.
Submission history
From: Sourangshu Ghosh [view email][v1] Thu, 26 Aug 2021 12:27:33 UTC (1,012 KB)
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.