Computer Science > Data Structures and Algorithms
[Submitted on 27 Aug 2021 (v1), last revised 18 Jul 2022 (this version, v2)]
Title:The Stochastic Bilevel Continuous Knapsack Problem with Uncertain Follower's Objective
View PDFAbstract:We consider a bilevel continuous knapsack problem where the leader controls the capacity of the knapsack, while the follower chooses a feasible packing maximizing his own profit. The leader's aim is to optimize a linear objective function in the capacity and in the follower's solution, but with respect to different item values. We address a stochastic version of this problem where the follower's profits are uncertain from the leader's perspective, and only a probability distribution is known. Assuming that the leader aims at optimizing the expected value of her objective function, we first observe that the stochastic problem is tractable as long as the possible scenarios are given explicitly as part of the input, which also allows to deal with general distributions using a sample average approximation. For the case of independently and uniformly distributed item values, we show that the problem is #P-hard in general, and the same is true even for evaluating the leader's objective function. Nevertheless, we present pseudo-polynomial time algorithms for this case, running in time linear in the total size of the items. Based on this, we derive an additive approximation scheme for the general case of independently distributed item values, which runs in pseudo-polynomial time.
Submission history
From: Dorothee Henke [view email][v1] Fri, 27 Aug 2021 14:30:14 UTC (20 KB)
[v2] Mon, 18 Jul 2022 13:02:42 UTC (21 KB)
Current browse context:
cs.DS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.