Computer Science > Machine Learning
[Submitted on 27 Aug 2021 (v1), last revised 15 Feb 2022 (this version, v2)]
Title:FAST-PCA: A Fast and Exact Algorithm for Distributed Principal Component Analysis
View PDFAbstract:Principal Component Analysis (PCA) is a fundamental data preprocessing tool in the world of machine learning. While PCA is often thought of as a dimensionality reduction method, the purpose of PCA is actually two-fold: dimension reduction and uncorrelated feature learning. Furthermore, the enormity of the dimensions and sample size in the modern day datasets have rendered the centralized PCA solutions unusable. In that vein, this paper reconsiders the problem of PCA when data samples are distributed across nodes in an arbitrarily connected network. While a few solutions for distributed PCA exist, those either overlook the uncorrelated feature learning aspect of the PCA, tend to have high communication overhead that makes them inefficient and/or lack `exact' or `global' convergence guarantees. To overcome these aforementioned issues, this paper proposes a distributed PCA algorithm termed FAST-PCA (Fast and exAct diSTributed PCA). The proposed algorithm is efficient in terms of communication and is proven to converge linearly and exactly to the principal components, leading to dimension reduction as well as uncorrelated features. The claims are further supported by experimental results.
Submission history
From: Waheed Bajwa [view email][v1] Fri, 27 Aug 2021 16:10:59 UTC (1,878 KB)
[v2] Tue, 15 Feb 2022 17:43:18 UTC (3,437 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.