Computer Science > Machine Learning
[Submitted on 27 Aug 2021 (v1), last revised 31 Aug 2021 (this version, v2)]
Title:Approximate Bayesian Optimisation for Neural Networks
View PDFAbstract:A body of work has been done to automate machine learning algorithm to highlight the importance of model choice. Automating the process of choosing the best forecasting model and its corresponding parameters can result to improve a wide range of real-world applications. Bayesian optimisation (BO) uses a blackbox optimisation methods to propose solutions according to an exploration-exploitation trade-off criterion through acquisition functions. BO framework imposes two key ingredients: a probabilistic surrogate model that consist of prior belief of the unknown objective function(data-dependant) and an objective function that describes how optimal is the model-fit. Choosing the best model and its associated hyperparameters can be very expensive, and is typically fit using Gaussian processes (GPs) and at some extends applying approximate inference due its intractability. However, since GPs scale cubically with the number of observations, it has been challenging to handle objectives whose optimization requires many evaluations. In addition, most real-dataset are non-stationary which make idealistic assumptions on surrogate models. The necessity to solve the analytical tractability and the computational feasibility in a stochastic fashion enables to ensure the efficiency and the applicability of Bayesian optimisation. In this paper we explore the use of neural networks as an alternative to GPs to model distributions over functions, we provide a link between density-ratio estimation and class probability estimation based on approximate inference, this reformulation provides algorithm efficiency and tractability.
Submission history
From: Nadhir Hassen [view email][v1] Fri, 27 Aug 2021 19:03:32 UTC (1,620 KB)
[v2] Tue, 31 Aug 2021 18:30:07 UTC (1,620 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.