High Energy Physics - Phenomenology
[Submitted on 29 Aug 2021 (v1), last revised 17 Mar 2022 (this version, v3)]
Title:Impact of SM parameters and of the vacua of the Higgs potential in gravitational waves detection
View PDFAbstract:In this work we discuss two different phases of a complex singlet extension of the Standard Model (SM) together with an extension that also includes new fermion fields, in particular, a Majoron model equipped with an inverse seesaw mechanism. All considered scenarios contain a global $\mathrm{U}(1)$ symmetry and allow for first-order phase transitions while only two of them are strong enough to favour the detection of primordial gravitational waves (GWs) in planned experiments such as LISA. In particular, this is shown to be possible in the singlet extension with a non vanishing real VEV at zero temperature and also in the model with extra fermions. In the singlet extension with no additional fermions, the detection of GWs strongly depends on the $\mathrm{U}(1)$ symmetry breaking pattern of the scalar potential at zero temperature. We study for the first time the impact of the precision in the determination of the SM parameters on the strength of the GWs spectrum. It turns out that the variation of the SM parameters such as the Higgs boson mass and top quark Yukawa coupling in their allowed experimental ranges has a notable impact on GWs detectability prospects.
Submission history
From: Rui Santos [view email][v1] Sun, 29 Aug 2021 10:23:30 UTC (5,375 KB)
[v2] Fri, 11 Mar 2022 10:13:58 UTC (7,737 KB)
[v3] Thu, 17 Mar 2022 07:49:07 UTC (7,968 KB)
Current browse context:
hep-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.