Computer Science > Computer Vision and Pattern Recognition
[Submitted on 29 Aug 2021]
Title:Differentiable Convolution Search for Point Cloud Processing
View PDFAbstract:Exploiting convolutional neural networks for point cloud processing is quite challenging, due to the inherent irregular distribution and discrete shape representation of point clouds. To address these problems, many handcrafted convolution variants have sprung up in recent years. Though with elaborate design, these variants could be far from optimal in sufficiently capturing diverse shapes formed by discrete points. In this paper, we propose PointSeaConv, i.e., a novel differential convolution search paradigm on point clouds. It can work in a purely data-driven manner and thus is capable of auto-creating a group of suitable convolutions for geometric shape modeling. We also propose a joint optimization framework for simultaneous search of internal convolution and external architecture, and introduce epsilon-greedy algorithm to alleviate the effect of discretization error. As a result, PointSeaNet, a deep network that is sufficient to capture geometric shapes at both convolution level and architecture level, can be searched out for point cloud processing. Extensive experiments strongly evidence that our proposed PointSeaNet surpasses current handcrafted deep models on challenging benchmarks across multiple tasks with remarkable margins.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.