High Energy Physics - Theory
[Submitted on 29 Aug 2021]
Title:Critical Quenches, OTOCs and Early-Time Chaos
View PDFAbstract:In this article, we explore dynamical aspects of Out-of-Time-Order correlators (OTOCs) for critical quenches, in which an initial non-trivial state evolves with a CFT-Hamiltonian. At sufficiently large time, global critical quenches exhibit a universal thermal-behaviour in terms of low-point correlators. We demonstrate that, under such a quench, OTOCs demarcate chaotic CFTs from integrable CFTs by exhibiting a characteristic exponential Lyapunov growth for the former. Upon perturbatively introducing inhomogeneity to the global quench, we further argue and demonstrate with an example that, such a perturbation parameter can induce a parametrically large scrambling time, even for a CFT with an order one central charge. This feature may be relevant in designing measurement protocols for non-trivial OTOCs, in general. Both our global and inhomogeneous quench results bode well for an upper bound on the corresponding Lyapunov exponent, that may hold outside thermal equilibrium.
Current browse context:
hep-th
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.