Computer Science > Machine Learning
[Submitted on 30 Aug 2021 (v1), last revised 31 Aug 2021 (this version, v2)]
Title:Communication-Computation Efficient Device-Edge Co-Inference via AutoML
View PDFAbstract:Device-edge co-inference, which partitions a deep neural network between a resource-constrained mobile device and an edge server, recently emerges as a promising paradigm to support intelligent mobile applications. To accelerate the inference process, on-device model sparsification and intermediate feature compression are regarded as two prominent techniques. However, as the on-device model sparsity level and intermediate feature compression ratio have direct impacts on computation workload and communication overhead respectively, and both of them affect the inference accuracy, finding the optimal values of these hyper-parameters brings a major challenge due to the large search space. In this paper, we endeavor to develop an efficient algorithm to determine these hyper-parameters. By selecting a suitable model split point and a pair of encoder/decoder for the intermediate feature vector, this problem is casted as a sequential decision problem, for which, a novel automated machine learning (AutoML) framework is proposed based on deep reinforcement learning (DRL). Experiment results on an image classification task demonstrate the effectiveness of the proposed framework in achieving a better communication-computation trade-off and significant inference speedup against various baseline schemes.
Submission history
From: Xinjie Zhang [view email][v1] Mon, 30 Aug 2021 06:36:30 UTC (3,822 KB)
[v2] Tue, 31 Aug 2021 15:13:59 UTC (3,817 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.