Computer Science > Information Theory
[Submitted on 30 Aug 2021 (v1), last revised 23 Nov 2021 (this version, v2)]
Title:Resource Allocation for Active IRS-Assisted Multiuser Communication Systems
View PDFAbstract:Intelligent reflecting surfaces (IRSs) are emerging as promising enablers for the next generation of wireless communication systems, because of their ability to customize favorable radio propagation environments. However, with the conventional passive architecture, IRSs can only adjust the phase of the incident signals limiting the achievable beamforming gain. To fully unleash the potential of IRSs, in this paper, we consider a more general IRS architecture, i.e., active IRSs, which can adapt the phase and amplify the magnitude of the reflected incident signal simultaneously with the support of an additional power source. To realize green communication in active IRS-assisted multiuser systems, we jointly optimize the reflection matrix at the IRS and the beamforming vector at the base station (BS) for the minimization of the BS transmit power. The resource allocation algorithm design is formulated as an optimization problem taking into account the maximum power budget of the active IRS and the quality-of-service (QoS) requirements of the users. To handle the non-convex design problem, we develop a novel and computationally efficient algorithm based on the bilinear transformation and inner approximation methods. The proposed algorithm is guaranteed to converge to a locally optimal solution of the considered problem. Simulation results illustrate the effectiveness of the proposed scheme compared to the two baseline schemes. Moreover, the results unveil that deploying active IRSs is a promising approach to enhance the system performance compared to conventional passive IRSs, especially when strong direct links exist.
Submission history
From: Dongfang Xu [view email][v1] Mon, 30 Aug 2021 07:42:30 UTC (107 KB)
[v2] Tue, 23 Nov 2021 20:54:42 UTC (107 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.