Computer Science > Networking and Internet Architecture
[Submitted on 28 May 2021]
Title:Probabilistic Verification for Reliability of a Two-by-Two Network-on-Chip System
View PDFAbstract:Modern network-on-chip (NoC) systems face reliability issues due to process and environmental variations. The power supply noise (PSN) in the power delivery network of a NoC plays a key role in determining reliability. PSN leads to voltage droop, which can cause timing errors in the NoC. This paper makes a novel contribution towards formally analyzing PSN in NoC systems. We present a probabilistic model checking approach to observe the PSN in a generic 2x2 mesh NoC with a uniform random traffic load. Key features of PSN are measured at the behavioral level. To tackle state explosion, we apply incremental abstraction techniques, including a novel probabilistic choice abstraction, based on observations of NoC behavior. The Modest Toolset is used for probabilistic modeling and verification. Results are obtained for several flit injection patterns to reveal their impacts on PSN. Our analysis finds an optimal flit pattern generation with zero probability of PSN events and suggests spreading flits rather than releasing them in consecutive cycles in order to minimize PSN.
Current browse context:
cs.NI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.