Computer Science > Sound
[Submitted on 30 Aug 2021]
Title:RSKNet-MTSP: Effective and Portable Deep Architecture for Speaker Verification
View PDFAbstract:The convolutional neural network (CNN) based approaches have shown great success for speaker verification (SV) tasks, where modeling long temporal context and reducing information loss of speaker characteristics are two important challenges significantly affecting the verification performance. Previous works have introduced dilated convolution and multi-scale aggregation methods to address above challenges. However, such methods are also hard to make full use of some valuable information, which make it difficult to substantially improve the verification performance. To address above issues, we construct a novel CNN-based architecture for SV, called RSKNet-MTSP, where a residual selective kernel block (RSKBlock) and a multiple time-scale statistics pooling (MTSP) module are first proposed. The RSKNet-MTSP can capture both long temporal context and neighbouring information, and gather more speaker-discriminative information from multi-scale features. In order to design a portable model for real applications with limited resources, we then present a lightweight version of RSKNet-MTSP, namely RSKNet-MTSP-L, which employs a combination technique associating the depthwise separable convolutions with low-rank factorization of weight matrices. Extensive experiments are conducted on two public SV datasets, VoxCeleb and Speaker in the Wild (SITW). The results demonstrate that 1) RSKNet-MTSP outperforms the state-of-the-art deep embedding architectures by at least 9%-26% in all test sets. 2) RSKNet-MTSP-L achieves competitive performance compared with baseline models with 17%-39% less network parameters. The ablation experiments further illustrate that our proposed approaches can achieve substantial improvement over prior methods.
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.