Astrophysics > Cosmology and Nongalactic Astrophysics
[Submitted on 30 Aug 2021]
Title:Using a Neural Network Classifier to Select Galaxies with the Most Accurate Photometric Redshifts
View PDFAbstract:The Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) will produce several billion photometric redshifts (photo-$z$'s), enabling cosmological analyses to select a subset of galaxies with the most accurate photo-$z$. We perform initial redshift fits on Subaru Strategic Program galaxies with deep $grizy$ photometry using Trees for Photo-Z (TPZ) before applying a custom neural network classifier (NNC) tuned to select galaxies with $(z_\mathrm{phot} - z_\mathrm{spec})/(1+z_\mathrm{spec}) < 0.10$. We consider four cases of training and test sets ranging from an idealized case to using data augmentation to increase the representation of dim galaxies in the training set. Selections made using the NNC yield significant further improvements in outlier fraction and photo-$z$ scatter ($\sigma_z$) over those made with typical photo-$z$ uncertainties. As an example, when selecting the best third of the galaxy sample, the NNC achieves a 35% improvement in outlier rate and a 23% improvement in $\sigma_z$ compared to using uncertainties from TPZ. For cosmology and galaxy evolution studies, this method can be tuned to retain a particular sample size or to achieve a desired photo-$z$ accuracy; our results show that it is possible to retain more than a third of an LSST-like galaxy sample while reducing $\sigma_z$ by a factor of two compared to the full sample, with one-fifth as many photo-$z$ outliers. For surveys like LSST that are not limited by shot noise, this method enables a larger number of tomographic redshift bins and hence a significant increase in the total signal-to-noise of galaxy angular power spectra.
Current browse context:
astro-ph.CO
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.