Computer Science > Robotics
[Submitted on 30 Aug 2021 (v1), last revised 21 May 2022 (this version, v3)]
Title:Sensor-Based Navigation Using Hierarchical Reinforcement Learning
View PDFAbstract:Robotic systems are nowadays capable of solving complex navigation tasks. However, their capabilities are limited to the knowledge of the designer and consequently lack generalizability to initially unconsidered situations. This makes deep reinforcement learning (DRL) especially interesting, as these algorithms promise a self-learning system only relying on feedback from the environment. In this paper, we consider the problem of lidar-based robot navigation in continuous action space using DRL without providing any goal-oriented or global information. By relying solely on local sensor data to solve navigation tasks, we design an agent that assigns its own waypoints based on intrinsic motivation. Our agent is able to learn goal-directed navigation behavior even when facing only sparse feedback, i.e., delayed rewards when reaching the target. To address this challenge and the complexity of the continuous action space, we deploy a hierarchical agent structure in which the exploration is distributed across multiple layers. Within the hierarchical structure, our agent self-assigns internal goals and learns to extract reasonable waypoints to reach the desired target position only based on local sensor data. In our experiments, we demonstrate the navigation capabilities of our agent in two environments and show that the hierarchical structure seriously improves the performance in terms of success rate and success weighted by path length in comparison to a flat structure. Furthermore, we provide a real-robot experiment to illustrate that the trained agent can be easily transferred to a real-world scenario.
Submission history
From: Christopher Gebauer [view email][v1] Mon, 30 Aug 2021 14:29:57 UTC (3,198 KB)
[v2] Sun, 20 Mar 2022 21:55:01 UTC (3,140 KB)
[v3] Sat, 21 May 2022 10:59:15 UTC (3,541 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.