Computer Science > Computer Vision and Pattern Recognition
[Submitted on 30 Aug 2021]
Title:StackGAN: Facial Image Generation Optimizations
View PDFAbstract:Current state-of-the-art photorealistic generators are computationally expensive, involve unstable training processes, and have real and synthetic distributions that are dissimilar in higher-dimensional spaces. To solve these issues, we propose a variant of the StackGAN architecture. The new architecture incorporates conditional generators to construct an image in many stages. In our model, we generate grayscale facial images in two different stages: noise to edges (stage one) and edges to grayscale (stage two). Our model is trained with the CelebA facial image dataset and achieved a Fréchet Inception Distance (FID) score of 73 for edge images and a score of 59 for grayscale images generated using the synthetic edge images. Although our model achieved subpar results in relation to state-of-the-art models, dropout layers could reduce the overfitting in our conditional mapping. Additionally, since most images can be broken down into important features, improvements to our model can generalize to other datasets. Therefore, our model can potentially serve as a superior alternative to traditional means of generating photorealistic images.
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.