High Energy Physics - Phenomenology
[Submitted on 30 Aug 2021 (v1), last revised 9 Apr 2022 (this version, v2)]
Title:Using Secondary Tau Neutrinos to Probe Heavy Dark Matter Decays in Earth
View PDFAbstract:Dark matter particles can be gravitationally trapped by celestial bodies, motivating searches for localized annihilation or decay. If neutrinos are among the decay products, then IceCube and other neutrino observatories could detect them. We investigate this scenario for dark matter particles above $m_{\chi} \gtrsim$ PeV producing tau neutrino signals, using updated modeling of dark matter capture and thermalization. At these energies, tau neutrino regeneration is an important effect during propagation through Earth, allowing detection at distances far longer than one interaction length. We show how large energy loss of tau leptons above $\sim$ PeV drives a wide range of initial energies to the same final energy spectrum of "secondary" tau neutrinos at the detector, and we provide an analytic approximation to the numerical results. This effect enables an experiment to constrain decays that occur at very high energies, and we examine the reach of the IceCube high-energy starting event (HESE) sample in the parameter space of trapped dark matter annihilations and decays above PeV. We find that the parameter space probed by IceCube searches would require dark matter cross sections in tension with existing direct-detection bounds.
Submission history
From: Jeffrey Hyde [view email][v1] Mon, 30 Aug 2021 17:58:34 UTC (938 KB)
[v2] Sat, 9 Apr 2022 16:34:23 UTC (1,068 KB)
Current browse context:
hep-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.