Astrophysics > Astrophysics of Galaxies
[Submitted on 30 Aug 2021 (v1), last revised 16 May 2022 (this version, v2)]
Title:Stellar streams and dark substructure: the diffusion regime
View PDFAbstract:The cold dark matter picture predicts an abundance of substructure within the Galactic halo. However, most substructures host no stars and can only be detected indirectly. Stellar streams present a promising probe of this dark substructure. These streams arise from tidally stripped star clusters or dwarf galaxies, and their low dynamical temperature and negligible self-gravity give them a sharp memory of gravitational perturbations caused by passing dark substructures. For this reason, perturbed stellar streams have been the subject of substantial study. While previous studies have been largely numerical, we show here that in the diffusion regime -- where stream stars are subjected to many small velocity kicks -- stream perturbations can be understood on a fully analytic level. In particular, we derive how the (three-dimensional) power spectrum of the substructure density field determines the power spectrum of the (one-dimensional) density of a stellar stream. Our analytic description supplies a clear picture of the behaviour of stream perturbations in response to a perturbing environment, which may include contributions from both dark and luminous substructure. In particular, stream perturbations grow in amplitude initially, settle into a steady state, and ultimately decay. By directly relating stellar stream perturbations to the surrounding matter distribution, this analytic framework represents a versatile new tool for probing the nature of dark matter through astrophysical observations.
Submission history
From: Sten Delos [view email][v1] Mon, 30 Aug 2021 18:00:00 UTC (896 KB)
[v2] Mon, 16 May 2022 18:23:25 UTC (1,129 KB)
Current browse context:
astro-ph.GA
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.