Astrophysics > High Energy Astrophysical Phenomena
[Submitted on 30 Aug 2021]
Title:The competing effect of gas and stars in massive black hole binaries evolution
View PDFAbstract:Massive black hole binaries are predicted to form during the hierarchical assembly of cosmic structures and will represent the loudest sources of low-frequency gravitational waves (GWs) detectable by present and forthcoming GW experiments. Before entering the GW-driven regime, their evolution is driven by the interaction with the surrounding stars and gas. While stellar interactions are found to always shrink the binary, recent studies predict the possibility of binary outspiral mediated by the presence of a gaseous disk, which could endlessly delay the coalescence and impact the merger rates of massive binaries. Here we implement a semi-analytical treatment that follows the binary evolution under the combined effect of stars and gas. We find that binaries may outspiral only if they accrete near or above their Eddington limit and only until their separation reaches the gaseous disk self-gravitating radius. Even in case of an outspiral, the binary eventually reaches a large enough mass for GW to take over and drive it to coalescence. The combined action of stellar hardening, mass growth and GW-driven inspiral brings binaries to coalescence in few hundreds Myr at most, implying that gas-driven expansion will not severely affect the detection prospects of upcoming GW facilities.
Current browse context:
astro-ph.HE
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.