Electrical Engineering and Systems Science > Audio and Speech Processing
[Submitted on 31 Aug 2021 (v1), last revised 23 May 2022 (this version, v3)]
Title:Music Demixing Challenge 2021
View PDFAbstract:Music source separation has been intensively studied in the last decade and tremendous progress with the advent of deep learning could be observed. Evaluation campaigns such as MIREX or SiSEC connected state-of-the-art models and corresponding papers, which can help researchers integrate the best practices into their models. In recent years, the widely used MUSDB18 dataset played an important role in measuring the performance of music source separation. While the dataset made a considerable contribution to the advancement of the field, it is also subject to several biases resulting from a focus on Western pop music and a limited number of mixing engineers being involved. To address these issues, we designed the Music Demixing (MDX) Challenge on a crowd-based machine learning competition platform where the task is to separate stereo songs into four instrument stems (Vocals, Drums, Bass, Other). The main differences compared with the past challenges are 1) the competition is designed to more easily allow machine learning practitioners from other disciplines to participate, 2) evaluation is done on a hidden test set created by music professionals dedicated exclusively to the challenge to assure the transparency of the challenge, i.e., the test set is not accessible from anyone except the challenge organizers, and 3) the dataset provides a wider range of music genres and involved a greater number of mixing engineers. In this paper, we provide the details of the datasets, baselines, evaluation metrics, evaluation results, and technical challenges for future competitions.
Submission history
From: Yuki Mitsufuji [view email][v1] Tue, 31 Aug 2021 00:12:48 UTC (259 KB)
[v2] Fri, 17 Sep 2021 05:32:40 UTC (259 KB)
[v3] Mon, 23 May 2022 09:47:14 UTC (3,069 KB)
Current browse context:
eess.AS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.