Computer Science > Sound
[Submitted on 31 Aug 2021 (v1), last revised 17 Oct 2021 (this version, v3)]
Title:Adversarial Example Devastation and Detection on Speech Recognition System by Adding Random Noise
View PDFAbstract:An automatic speech recognition (ASR) system based on a deep neural network is vulnerable to attack by an adversarial example, especially if the command-dependent ASR fails. A defense method against adversarial examples is proposed to improve the robustness and security of the ASR system. We propose an algorithm of devastation and detection on adversarial examples that can attack current advanced ASR systems. We choose an advanced text- and command-dependent ASR system as our target, generating adversarial examples by an optimization-based attack on text-dependent ASR and the GA-based algorithm on command-dependent ASR. The method is based on input transformation of adversarial examples. Different random intensities and kinds of noise are added to adversarial examples to devastate the perturbation previously added to normal examples. Experimental results show that the method performs well. For the devastation of examples, the original speech similarity after adding noise can reach 99.68%, the similarity of adversarial examples can reach zero, and the detection rate of adversarial examples can reach 94%.
Submission history
From: Diqun Yan [view email][v1] Tue, 31 Aug 2021 00:32:25 UTC (1,485 KB)
[v2] Thu, 9 Sep 2021 23:56:48 UTC (1,396 KB)
[v3] Sun, 17 Oct 2021 11:39:38 UTC (1,283 KB)
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.