Computer Science > Computer Vision and Pattern Recognition
[Submitted on 31 Aug 2021]
Title:Super-Resolution Appearance Transfer for 4D Human Performances
View PDFAbstract:A common problem in the 4D reconstruction of people from multi-view video is the quality of the captured dynamic texture appearance which depends on both the camera resolution and capture volume. Typically the requirement to frame cameras to capture the volume of a dynamic performance ($>50m^3$) results in the person occupying only a small proportion $<$ 10% of the field of view. Even with ultra high-definition 4k video acquisition this results in sampling the person at less-than standard definition 0.5k video resolution resulting in low-quality rendering. In this paper we propose a solution to this problem through super-resolution appearance transfer from a static high-resolution appearance capture rig using digital stills cameras ($> 8k$) to capture the person in a small volume ($<8m^3$). A pipeline is proposed for super-resolution appearance transfer from high-resolution static capture to dynamic video performance capture to produce super-resolution dynamic textures. This addresses two key problems: colour mapping between different camera systems; and dynamic texture map super-resolution using a learnt model. Comparative evaluation demonstrates a significant qualitative and quantitative improvement in rendering the 4D performance capture with super-resolution dynamic texture appearance. The proposed approach reproduces the high-resolution detail of the static capture whilst maintaining the appearance dynamics of the captured video.
Submission history
From: Marco Pesavento [view email][v1] Tue, 31 Aug 2021 10:53:11 UTC (46,244 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.