Electrical Engineering and Systems Science > Systems and Control
[Submitted on 31 Aug 2021 (v1), last revised 15 Jul 2022 (this version, v3)]
Title:Suboptimal nonlinear moving horizon estimation
View PDFAbstract:In this paper, we propose a suboptimal moving horizon estimator for a general class of nonlinear systems. For the stability analysis, we transfer the "feasibility-implies-stability/robustness" paradigm from model predictive control to the context of moving horizon estimation in the following sense: Using a suitably defined, feasible candidate solution based on an auxiliary observer, robust stability of the proposed suboptimal estimator is inherited independently of the horizon length and even if no optimization is performed. Moreover, the proposed design allows for the choice between two cost functions different in structure: the former in the manner of a standard least squares approach, which is typically used in practice, and the latter following a time-discounted modification, resulting in better theoretical guarantees. We apply the proposed suboptimal estimator to a nonlinear chemical reactor process, verify the theoretical assumptions, and show that even a few iterations of the optimizer are sufficient to significantly improve the estimation results of the auxiliary observer. Furthermore, we illustrate the flexibility of the proposed design by employing different solvers and compare the performance with two state-of-the-art fast MHE schemes from the literature.
Submission history
From: Julian Schiller [view email][v1] Tue, 31 Aug 2021 11:05:38 UTC (292 KB)
[v2] Tue, 15 Mar 2022 18:33:50 UTC (292 KB)
[v3] Fri, 15 Jul 2022 08:38:49 UTC (305 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.