Computer Science > Information Theory
[Submitted on 31 Aug 2021]
Title:Robust Symbol-Level Precoding and Passive Beamforming for IRS-Aided Communications
View PDFAbstract:This paper investigates a joint beamforming design in a multiuser multiple-input single-output (MISO) communication network aided with an intelligent reflecting surface (IRS) panel. The symbol-level precoding (SLP) is adopted to enhance the system performance by exploiting the multiuser interference (MUI) with consideration of bounded channel uncertainty. The joint beamforming design is formulated into a nonconvex worst-case robust programming to minimize the transmit power subject to single-to-noise ratio (SNR) requirements. To address the challenges due to the constant modulus and the coupling of the beamformers, we first study the single-user case. Specifically, we propose and compare two algorithms based on the semidefinite relaxation (SDR) and alternating optimization (AO) methods, respectively. It turns out that the AO-based algorithm has much lower computational complexity but with almost the same power to the SDR-based algorithm. Then, we apply the AO technique to the multiuser case and thereby develop an algorithm based on the proximal gradient descent (PGD) method. The algorithm can be generalized to the case of finite-resolution IRS and the scenario with direct links from the transmitter to the users. Numerical results show that the SLP can significantly improve the system performance. Meanwhile, 3-bit phase shifters can achieve near-optimal power performance.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.