Computer Science > Computer Vision and Pattern Recognition
[Submitted on 31 Aug 2021 (v1), last revised 26 Mar 2024 (this version, v3)]
Title:Semi-Supervised Crowd Counting from Unlabeled Data
View PDF HTML (experimental)Abstract:Automatic Crowd behavior analysis can be applied to effectively help the daily transportation statistics and planning, which helps the smart city construction. As one of the most important keys, crowd counting has drawn increasing attention. Recent works achieved promising performance but relied on the supervised paradigm with expensive crowd annotations. To alleviate the annotation cost in real-world transportation scenarios, in this work we proposed a semi-supervised learning framework $S^{4}\textit{Crowd}$, which can leverage both unlabeled/labeled data for robust crowd counting. In the unsupervised pathway, two \textit{self-supervised losses} were proposed to simulate the crowd variations such as scale, illumination, based on which supervised information pseudo labels were generated and gradually refined. We also proposed a crowd-driven recurrent unit \textit{Gated-Crowd-Recurrent-Unit (GCRU)}, which can preserve discriminant crowd information by extracting second-order statistics, yielding pseudo labels with improved quality. A joint loss including both unsupervised/supervised information was proposed, and a dynamic weighting strategy was employed to balance the importance of the unsupervised loss and supervised loss at different training stages. We conducted extensive experiments on four popular crowd counting datasets in semi-supervised settings. Experimental results supported the effectiveness of each proposed component in our $S^{4}$Crowd framework. Our method achieved competitive performance in semi-supervised learning approaches on these crowd counting datasets.
Submission history
From: Haoran Duan [view email][v1] Tue, 31 Aug 2021 16:51:00 UTC (1,169 KB)
[v2] Sun, 27 Feb 2022 19:05:37 UTC (1 KB) (withdrawn)
[v3] Tue, 26 Mar 2024 16:13:26 UTC (1,190 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.